

Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor DM74ALS165N

For any questions, you can email us directly: <u>sales@integrated-circuit.com</u>

FAIRCHILD

SEMICONDUCTOR

DM74ALS165 8-Bit Parallel In/Serial Out Shift Register

General Description

The DM74ALS165 is an 8-bit serial register that, when clocked, shifts the data toward serial output, \overline{Q}_{H} . Parallel-in access to each stage is provided by eight individual direct data inputs that are enabled by a low level at the SH/LD input. The DM74ALS165 also features a clock inhibit function and a complemented serial output, Q_H

Clocking is accomplished by a LOW-to-HIGH transition of the CLK input while $\mathrm{SH}/\overline{\mathrm{LD}}$ is held HIGH and CLK INH is held LOW. The functions of the CLK and CLK INH (clock inhibit) inputs are interchangeable. Since a LOW CLK input and a LOW-to-HIGH transition of CLK INH will also accomplish clocking, CLK INH should be changed to the high level only while the <u>C</u>LK input is HIGH. Parallel loading is inhibited when SH/LD is held HIGH. The parallel inputs to the register are enabled while SH/LD is LOW independently of the levels of CLK, CLK INH, or SER inputs.

Features

Complementary outputs

January 1986

Revised February 2000

- Direct overriding load (data) inputs
- Gated clock inputs
- Parallel-to-serial data conversion

Ordering Code:

Order Number	Package Number	Package Description			
DM74ALS165M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow			
DM74ALS165N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code					

Connection Diagram

Function Table

Inputs						Internal			
Shift/	Clock	Clock	Serial	Parallel	Outputs		Outputs		Output
Load	Inhibit			AH	Q _A	QB	Q _H		
L	Х	Х	Х	ah	а	b	h		
н	L	L	Х	Х	Q_{A0}	Q_{B0}	Q _{H0}		
н	L	\uparrow	Н	Х	Н	Q _{An}	Q _{Gn}		
н	L	\uparrow	L	Х	L	Q_{An}	Q _{Gn}		
н	\uparrow	L	н	Х	Н	Q_{An}	Q _{Gn}		
н	Ŷ	L	L	Х	L	Q_{An}	Q _{Gn}		
Н	Н	Х	Х	Х	Q_{A0}	Q_{B0}	Q _{H0}		

L = LOW Level (steady-state)

X = Don't Care (any input, including transitions) ↑ = Transition from LOW-to-HIGH level a...h = The level of steady-state input at inputs A through H, respectively ${\rm Q}_{A0},\,{\rm Q}_{B0},\,{\rm Q}_{H0}$ = The level of ${\rm Q}_A,\,{\rm Q}_B,\,{\rm or}\,\,{\rm Q}_H,$ respectively, before the

indicated steady-state input conditions were established

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G , respectively, before the most recent 1 transition of the clock

Absolute Maximum Ratings(Note 1)

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74ALS165

Recommended Operating Conditions

Symbol	P	Min	Тур	Max	Units		
V _{CC}	Supply Voltage	4.5	5	5.5	V		
VIH	HIGH Level Input Vo	oltage	2			V	
V _{IL}	LOW Level Input Vo	Itage			0.8	V	
I _{OH}	HIGH Level Output	Current			-0.4	mA	
I _{OL}	LOW Level Output 0			8	mA		
f CLOCK	Clock Frequency	45			MHz		
t _W	Pulse Duration	CLK HIGH	11				
		CLK LOW	11			ns	
		Load	12				
t _{SU}	Setup Time	SH/LD	10				
		Data	10			- ns	
t _{SU}	Setup Time	CLK INH ↓ before CLK	11				
		Serial before CLK	10			- ns	
t _H	Hold Time		4			ns	
T _A	Operating Free Air Temperature		0		70	°C	

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	$I_{OH} = -0.4 \text{ mA}$		V 2			V
	Output Voltage	$V_{CC} = 4.5V$ to 5.5V		VCC - 2			v
V _{OL}	LOW Level	$V_{CC} = 4.5V$	$I_{OL} = 4 \text{ mA}$		0.25	0.4	V
	Output Voltage		I _{OL} = 8 mA		0.35	0.5	v
l _l	Input Current at Max Input Voltage	$V_{CC} = 5.5V, V_I = 7V$				0.1	mA
IIH	HIGH Level Input Current	$V_{CC} = 5.5V, V_I = 2.7V$				20	μΑ
IIL .	LOW Level Input Current	$V_{CC} = 5.5V, V_I = 0.4V$				-0.1	mA
I _O (Note 3)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{CC}	Supply Current	V _{CC} = 5.5V (Note 4)			16	24	mA

Note 2: All typical values are at V_{CC} = 5V, T_A = 25°C.

Note 3: The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

Note 4: With the outputs open, CLK INH and CLK at 4.5V, and a clock pulse applied to the SH/LD input, I_{CC} is measured first with the parallel inputs at 4.5V, then with the parallel inputs grounded.

9
~
S
◄
4
N
5
5

Symbol	Parameter	Innut	Output	Conditions	Min	Typ	Max	Units
f _{MAX}	Maximum Frequency	mpar	output	$V_{CC} = 4.5V \text{ to } 5.5V,$	45	60	max	MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Load	$Q_H \text{ or } \overline{Q}_H$	$C_L = 50 \text{ pF},$ $R_L = 500\Omega$ $T_A = \text{Min to Max}$	4	13	20	- ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Load	$Q_H \text{ or } \overline{Q}_H$		4	14	22	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	CLK	$Q_H \text{ or } \overline{Q}_H$		3	7	13	- ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	CLK	$Q_H \text{ or } \overline{Q}_H$		3	9	14	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	н	Q _H		3	7	13	ne
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	н	Q _H		3	9	16	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	н	Q _H		2	8	15	
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	н	Q _H		3	9	16	ns

