Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

STMicroelectronics
STGIPS20C60-H

For any questions, you can email us directly:
sales@integrated-circuit.com
STGIPS20C60-H

SLLIMM™ small low-loss intelligent molded module
IPM, 3-phase inverter - 20 A, 600 V short-circuit rugged IGBT

Applications
- 3-phase inverters for motor drives
- Air conditioners

Description
This intelligent power module provides a compact, high performance AC motor drive in a simple, rugged design. Combining ST proprietary control ICs with the most advanced short-circuit-rugged IGBT system technology, this device is ideal for 3-phase inverters in applications such as motor drives and air conditioners. SLLIMM™ is a trademark of STMicroelectronics.

Features
- IPM 20 A, 600 V 3-phase IGBT inverter bridge including control ICs for gate driving and free-wheeling diodes
- Short-circuit rugged IGBTs
- 3.3 V, 5 V, 15 V CMOS/TTL inputs comparators with hysteresis and pull-down / pull-up resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Smart shutdown function
- Comparator for fault protection against overtemperature and overcurrent
- DBC leading to low thermal resistance
- Isolation rating of 2500 V rms/min
- UL recognized: UL1557 file E81734

Table 1. Device summary

<table>
<thead>
<tr>
<th>Order code</th>
<th>Marking</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>STGIPS20C60-H</td>
<td>GIPS20C60-H</td>
<td>SDIP-25L</td>
<td>Tube</td>
</tr>
</tbody>
</table>

This is information on a product in full production.

April 2015

DocID024483 Rev 4
Contents

1. Internal block diagram and pin configuration 3

2. Electrical ratings .. 5
 2.1 Absolute maximum ratings ... 5
 2.2 Thermal data ... 6

3. Electrical characteristics .. 7
 3.1 Control part ... 9
 3.2 Waveform definitions .. 11

4. Smart shutdown function .. 12

5. Application information .. 14
 5.1 Recommendations .. 15

6. Package information ... 16
 6.1 SDIP-25L package information 16
 6.2 Packing information .. 18

7. Revision history ... 19
1 Internal block diagram and pin configuration

Figure 1. Internal block diagram
Table 2. Pin description

<table>
<thead>
<tr>
<th>Pin n°</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT_U</td>
<td>High-side reference output for U phase</td>
</tr>
<tr>
<td>2</td>
<td>V_{bootU}</td>
<td>Bootstrap voltage for U phase</td>
</tr>
<tr>
<td>3</td>
<td>LIN_U</td>
<td>Low-side logic input for U phase</td>
</tr>
<tr>
<td>4</td>
<td>HIN_U</td>
<td>High-side logic input for U phase</td>
</tr>
<tr>
<td>5</td>
<td>V_{CC}</td>
<td>Low voltage power supply</td>
</tr>
<tr>
<td>6</td>
<td>OUT_V</td>
<td>High-side reference output for V phase</td>
</tr>
<tr>
<td>7</td>
<td>V_{bootV}</td>
<td>Bootstrap voltage for V phase</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>LIN_V</td>
<td>Low-side logic input for V phase</td>
</tr>
<tr>
<td>10</td>
<td>HIN_V</td>
<td>High-side logic input for V phase</td>
</tr>
<tr>
<td>11</td>
<td>OUT_W</td>
<td>High-side reference output for W phase</td>
</tr>
<tr>
<td>12</td>
<td>V_{bootW}</td>
<td>Bootstrap voltage for W phase</td>
</tr>
<tr>
<td>13</td>
<td>LIN_W</td>
<td>Low-side logic input for W phase</td>
</tr>
<tr>
<td>14</td>
<td>HIN_W</td>
<td>High-side logic input for W phase</td>
</tr>
<tr>
<td>15</td>
<td>SD/OD</td>
<td>Shutdown logic input (active low) / open-drain (comparator output)</td>
</tr>
<tr>
<td>16</td>
<td>CIN</td>
<td>Comparator input</td>
</tr>
<tr>
<td>17</td>
<td>N_W</td>
<td>Negative DC input for W phase</td>
</tr>
<tr>
<td>18</td>
<td>W</td>
<td>W phase output</td>
</tr>
<tr>
<td>19</td>
<td>P</td>
<td>Positive DC input</td>
</tr>
<tr>
<td>20</td>
<td>N_V</td>
<td>Negative DC input for V phase</td>
</tr>
<tr>
<td>21</td>
<td>V</td>
<td>V phase output</td>
</tr>
<tr>
<td>22</td>
<td>P</td>
<td>Positive DC input</td>
</tr>
<tr>
<td>23</td>
<td>N_U</td>
<td>Negative DC input for U phase</td>
</tr>
<tr>
<td>24</td>
<td>U</td>
<td>U phase output</td>
</tr>
<tr>
<td>25</td>
<td>P</td>
<td>Positive DC input</td>
</tr>
</tbody>
</table>

Figure 2. Pin layout (bottom view)
STGIPS20C60-H

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3. Inverter part

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{PN})</td>
<td>Supply voltage applied between (P - N_U, N_V, N_W)</td>
<td>450</td>
<td>V</td>
</tr>
<tr>
<td>(V_{PN(surge)})</td>
<td>Supply voltage (surge) applied between (P - N_U, N_V, N_W)</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CES})</td>
<td>Each IGBT collector emitter voltage ((V_{IN}^{(1)} = 0))</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>(\pm I_C)</td>
<td>Each IGBT continuous collector current at (T_C = 25^\circ C)</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>(\pm I_{CP}^{(2)})</td>
<td>Each IGBT pulsed collector current</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td>(P_{TOT})</td>
<td>Each IGBT total dissipation at (T_C = 25^\circ C)</td>
<td>46</td>
<td>W</td>
</tr>
<tr>
<td>(t_{scw})</td>
<td>Short circuit withstand time, (V_{CE} = 0.5 V_{BRICES}) (T_j = 125^\circ C, V_{CC} = V_{boot} = 15 V, V_{IN}^{(1)} = 0 - 5 V)</td>
<td>5</td>
<td>µs</td>
</tr>
</tbody>
</table>

1. Applied between \(HIN_i, LIN_i\) and \(GND\) for \(i = U, V, W\)
2. Pulse width limited by max junction temperature

Table 4. Control part

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OUT})</td>
<td>Output voltage applied between (OUT_U, OUT_V, OUT_W - GND)</td>
<td>(V_{boot} - 21) to (V_{boot} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CC})</td>
<td>Low voltage power supply</td>
<td>-0.3 to +21</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CIN})</td>
<td>Comparator input voltage</td>
<td>-0.3 to (V_{CC} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{boot})</td>
<td>Bootstrap voltage applied between (V_{boot i} - OUT_i) for (i = U, V, W)</td>
<td>-0.3 to 620</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>Logic input voltage applied between (HIN, LIN) and (GND)</td>
<td>-0.3 to 15</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SD/OD})</td>
<td>Open drain voltage</td>
<td>-0.3 to 15</td>
<td>V</td>
</tr>
<tr>
<td>(dV_{OUT}/dt)</td>
<td>Allowed output slew rate</td>
<td>50</td>
<td>V/ns</td>
</tr>
</tbody>
</table>

Table 5. Total system

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ISO})</td>
<td>Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, (t = 60) sec.)</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>(T_j)</td>
<td>Power chips operating junction temperature</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_C)</td>
<td>Module case operation temperature</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
</tbody>
</table>
2.2 Thermal data

Table 6. Thermal data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{thJC}</td>
<td>Thermal resistance junction-case single IGBT</td>
<td>2.7</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance junction-case single diode</td>
<td>5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

1. Simulated curves refer to typical IGBT parameters and maximum R_{thJC}.

Figure 3. Maximum $I_{C(RMS)}$ current vs. switching frequency

Figure 4. Maximum $I_{C(RMS)}$ current vs. f_{sine}

1. Simulated curves refer to typical IGBT parameters and maximum R_{thJC}.

3-phase sinusoidal PWM

$V_{ph} = 300$ V, Modulation Index = 0.8,
PP = 0.6, $T_j = 150$ °C, $T_{case} = 60$ °C

$T_c = 80$ °C

$T_c = 100$ °C

$T_{sine} = 60$ Hz

$T_{sine} = 12$ kHz

$T_{sine} = 16$ kHz

$T_{sine} = 20$ kHz
3 Electrical characteristics

$T_J = 25 \, ^\circ\text{C}$ unless otherwise specified.

Table 7. Inverter part

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CE(sat)}$</td>
<td>Collector-emitter saturation voltage</td>
<td>$V_{CC} = V_{boot} = 15 , \text{V}$, $V_{IN}^{(1)} = 0 \div 5 , \text{V}$, $I_C = 20 , \text{A}$</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = V_{boot} = 15 , \text{V}$, $V_{IN}^{(1)} = 0 \div 5 , \text{V}$, $I_C = 20 , \text{A}$, $T_J = 125 , ^\circ\text{C}$</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>I_{CES}</td>
<td>Collector-cut off current ($V_{IN}^{(1)} = 0$ “logic state”)</td>
<td>$V_{CE} = 550 , \text{V}$, $V_{CC} = V_{Boot} = 15 , \text{V}$</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>V_F</td>
<td>Diode forward voltage</td>
<td>$V_{IN}^{(1)} = 0$ “logic state”, $I_C = 20 , \text{A}$</td>
<td>-</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Inductive load switching time and energy

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{on}</td>
<td>Turn-on time</td>
<td>$V_{PN} = 300 , \text{V}$, $V_{CC} = V_{boot} = 15 , \text{V}$</td>
<td>-</td>
<td>390</td>
</tr>
<tr>
<td>$t_{(on)}$</td>
<td>Crossover time (on)</td>
<td>$V_{IN}^{(1)} = 0 \div 5 , \text{V}$, $I_C = 20 , \text{A}$</td>
<td>-</td>
<td>170</td>
</tr>
<tr>
<td>t_{off}</td>
<td>Turn-off time</td>
<td>$I_C = 20 , \text{A}$ (see Figure 5)</td>
<td>-</td>
<td>970</td>
</tr>
<tr>
<td>$t_{(off)}$</td>
<td>Crossover time (off)</td>
<td>$I_C = 20 , \text{A}$</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Reverse recovery time</td>
<td></td>
<td>-</td>
<td>284</td>
</tr>
<tr>
<td>E_{on}</td>
<td>Turn-on switching losses</td>
<td></td>
<td>-</td>
<td>520</td>
</tr>
<tr>
<td>E_{off}</td>
<td>Turn-off switching losses</td>
<td></td>
<td>-</td>
<td>460</td>
</tr>
</tbody>
</table>

1. Applied between HIN_i, LIN_i and GND for $i = U, V, W$.

Note: t_{ON} and t_{OFF} include the propagation delay time of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the internally given gate driving condition.
Figure 5. Switching time test circuit

Figure 6. Switching time definition

Figure 4 “Switching time definition” refers to HIN, LIN inputs (active high).
3.1 Control part

Table 8. Low voltage power supply ($V_{CC} = 15$ V unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC_hys}</td>
<td>V_{CC} UV hysteresis</td>
<td>$V_{CC} = 10$ V</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC_THON}</td>
<td>V_{CC} UV turn ON threshold</td>
<td>$SD/OD = 5$ V; LIN = HIN = 0, $C_{IN} = 0$</td>
<td>11.5</td>
<td>12</td>
<td>12.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC_THOFF}</td>
<td>V_{CC} UV turn OFF threshold</td>
<td>$V_{CC} = 15$ V</td>
<td>10</td>
<td>10.5</td>
<td>11</td>
<td>V</td>
</tr>
</tbody>
</table>

| I_{QCCU} | Undervoltage quiescent supply current | $V_{CC} = 10$ V | 450 | µA |

| I_{QCC} | Quiescent current | $V_{CC} = 15$ V | 3.5 | mA |

| V_{ref} | Internal comparator (CIN) reference voltage | | 0.5 | 0.54 | 0.58 | V |

Table 9. Bootstrapped voltage ($V_{CC} = 15$ V unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BS_hys}</td>
<td>V_{BS} UV hysteresis</td>
<td>$V_{BS} < 9$ V</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{BS_THON}</td>
<td>V_{BS} UV turn ON threshold</td>
<td>$SD/OD = 5$ V; LIN = 0, $HIN = 5$ V; $C_{IN} = 0$</td>
<td>11.1</td>
<td>11.5</td>
<td>12.1</td>
<td>V</td>
</tr>
<tr>
<td>V_{BS_THOFF}</td>
<td>V_{BS} UV turn OFF threshold</td>
<td>$V_{BS} = 15$ V</td>
<td>9.8</td>
<td>10</td>
<td>10.6</td>
<td>V</td>
</tr>
</tbody>
</table>

| I_{QBSU} | Undervoltage V_{BS} quiescent current | $V_{BS} = 15$ V | 70 | 110 | µA |

| I_{QBS} | V_{BS} quiescent current | $SD/OD = 5$ V; LIN = 0, $HIN = 5$ V; $C_{IN} = 0$ | 200 | 300 | µA |

| $R_{DS(on)}$ | Bootstrap driver on resistance | $LIN= 5$ V; $HIN= 0$ V | 120 | Ω |

Table 10. Logic inputs ($V_{CC} = 15$ V unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{il}</td>
<td>Low level logic threshold voltage</td>
<td></td>
<td>0.8</td>
<td>1.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{ih}</td>
<td>High level logic threshold voltage</td>
<td></td>
<td>1.9</td>
<td>2.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{HIN_N}</td>
<td>HI logic “1” input bias current</td>
<td>$HIN = 15$ V</td>
<td>20</td>
<td>40</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td>I_{HIN_I}</td>
<td>HI logic “0” input bias current</td>
<td>$HIN = 0$ V</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{LIN_N}</td>
<td>LI logic “1” input bias current</td>
<td>$LIN = 15$ V</td>
<td>20</td>
<td>40</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td>I_{LIN_I}</td>
<td>LI logic “0” input bias current</td>
<td>$LIN = 0$ V</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{SDn}</td>
<td>SD logic “0” input bias current</td>
<td>$SD = 15$ V</td>
<td>30</td>
<td>120</td>
<td>300</td>
<td>µA</td>
</tr>
<tr>
<td>I_{SDI}</td>
<td>SD logic “1” input bias current</td>
<td>$SD = 0$ V</td>
<td>3</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Dt</td>
<td>Dead time</td>
<td>see Figure 7 and Table 13</td>
<td>1.2</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

DocID024483 Rev 4 9/20
Electrical characteristics

STGIPS20C60-H

Table 11. Sense comparator characteristics (V_{CC} = 15 V unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><i>i</i><sub>b</sub></td>
<td>Input bias current</td>
<td><i>V</i><sub>CIN</sub> = 1 V</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>µA</td>
</tr>
<tr>
<td><i>V</i><sub>ol</sub></td>
<td>Open-drain low-level output voltage</td>
<td><i>I</i><sub>od</sub> = 3 mA</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td><i>t</i><sub>td_comp</sub></td>
<td>Comparator delay</td>
<td>SD/OD pulled to 5 V through 100 kΩ resistor</td>
<td>-</td>
<td>90</td>
<td>130</td>
<td>ns</td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td><i>C</i><sub>L</sub> = 180 pF; <i>R</i><sub>pu</sub> = 5 kΩ</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>V/µsec</td>
</tr>
<tr>
<td><i>t</i><sub>sd</sub></td>
<td>Shut down to high / low side driver propagation delay</td>
<td><i>V</i><sub>OUT</sub> = 0, <i>V</i><sub>Boot</sub> = <i>V</i><sub>CC</sub>, <i>V</i><sub>I</sub> = 0 to 3.3 V</td>
<td>50</td>
<td>125</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td><i>t</i><sub>isd</sub></td>
<td>Comparator triggering to high / low side driver turn-off propagation delay</td>
<td>Measured applying a voltage step from 0 V to 3.3 V to pin <i>CIN</i></td>
<td>50</td>
<td>200</td>
<td>250</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 12. Truth table

<table>
<thead>
<tr>
<th>Condition</th>
<th>SD/OD</th>
<th>LIN</th>
<th>HIN</th>
<th>LVG</th>
<th>HVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown enable half-bridge tri-state</td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Interlocking half-bridge tri-state</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>0 “logic state” half-bridge tri-state</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1 “logic state” low side direct driving</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>1 “logic state” high side direct driving</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

Note: X: don’t care
3.2 Waveform definitions

Figure 7. Dead time and interlocking waveforms definition

- **CONTROL SIGNAL EDGES OVERLAPPED: INTERLOCKING + DEAD TIME**
 - L/N
 - H/N
 - L/VG
 - H/VG
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)

- **CONTROL SIGNALS EDGES SYNCHRONOUS (**): DEAD TIME**
 - L/N
 - H/N
 - L/VG
 - H/VG
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)

- **CONTROL SIGNALS EDGES NOT OVERLAPPED, BUT INSIDE THE DEAD TIME: DEAD TIME**
 - L/N
 - H/N
 - L/VG
 - H/VG
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)

- **CONTROL SIGNALS EDGES NOT OVERLAPPED, OUTSIDE THE DEAD TIME: DIRECT DRIVING**
 - L/N
 - H/N
 - L/VG
 - H/VG
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)
 - Gate driver outputs OFF (HALF-BRIDGE TRI-STATE)
4 Smart shutdown function

The STGIPS20C60-H integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{ref} connected to the inverting input, while the non-inverting input, available on pin (CIN), can be connected to an external shunt resistor in order to implement a simple over-current protection function. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in tri-state. In the common overcurrent protection architectures the comparator output is usually connected to the shutdown input through a RC network, in order to provide a mono-stable circuit, which implements a protection time that follows the fault condition. Our smart shutdown architecture allows to immediately turn-off the output gate driver in case of overcurrent, the fault signal has a preferential path which directly switches off the outputs. The time delay between the fault and the outputs turn-off is no more dependent on the RC values of the external network connected to the shutdown pin. At the same time the DMOS connected to the open-drain output (pin \overline{SD}/OD) is turned on by the internal logic which holds it on until the shutdown voltage is lower than the logic input lower threshold (V_{il}). Finally the smart shutdown function provides the possibility to increase the real disable time without increasing the constant time of the external RC network.
Smart shutdown function

Figure 8. Smart shutdown timing waveforms

An approximation of the disable time is given by:

\[
\tau_1 \approx \tau_1 \cdot \ln\left(\frac{V_{\text{off}} - V_{\text{on}}}{V_{\text{dd}} - V_{\text{on}}} \right)
\]

\[
\tau_2 \approx \tau_2 \cdot \ln\left(\frac{V_{\text{th}} - V_{\text{off}}}{V_{\text{dd}} - V_{\text{off}}} \right)
\]

where:

\[
\tau_1 = \frac{R_{\text{oh,od}}}{R_{\text{sd}}} \cdot C_{\text{sd}}
\]

\[
\tau_2 = \frac{R_{\text{rd,od}} + R_{\text{sd}}}{R_{\text{sd}}} \cdot C_{\text{sd}}
\]

\[
V_{\text{on}} = \frac{R_{\text{oh,od}}}{R_{\text{oh,od}} + R_{\text{sd}}} \cdot V_{\text{bias}}
\]

\[
V_{\text{off}} = \frac{R_{\text{rd,od}}}{R_{\text{rd,od}} + R_{\text{sd}}} \cdot V_{\text{bias}}
\]

Please refer to Table 11 for internal propagation delay time details.
5 Application information

Figure 9. Typical application circuit
5.1 Recommendations

- Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull down resistor is built-in for each input. If an external RC filter is used, for noise immunity, pay attention to the variation of the input signal level.
- To prevent the input signals oscillation, the wiring of each input should be as short as possible.
- By integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler is possible.
- Each capacitor should be located as nearby the pins of IPM as possible.
- Low inductance shunt resistors should be used for phase leg current sensing.
- Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see Section 4: Smart shutdown function for detailed info).

Table 13. Recommended operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{PN}</td>
<td>Supply Voltage</td>
<td>Applied between P-Nu,Nv,Nw</td>
<td>Min. 300 Typ. 400 Max. V</td>
<td></td>
</tr>
<tr>
<td>V_{CC}</td>
<td>Control supply voltage</td>
<td>Applied between V_{CC}-GND</td>
<td>Min. 13 Typ. 15 Max. 18 V</td>
<td></td>
</tr>
<tr>
<td>V_{BS}</td>
<td>High side bias voltage</td>
<td>Applied between V_{BOOT}-OUT_i for i=U,V,W</td>
<td>Min. 13 Typ. 18 V</td>
<td></td>
</tr>
<tr>
<td>t_{dead}</td>
<td>Blanking time to prevent Arm-short</td>
<td>For each input signal</td>
<td>Min. 1.5 Typ. µs</td>
<td></td>
</tr>
<tr>
<td>f_{PWM}</td>
<td>PWM input signal</td>
<td>-40°C < T_c < 100°C -40°C < T_j < 125°C</td>
<td>Min. 20 Typ. kHz</td>
<td></td>
</tr>
<tr>
<td>T_C</td>
<td>Case operation temperature</td>
<td></td>
<td>Min. 100 Typ. °C</td>
<td></td>
</tr>
</tbody>
</table>

Note: For further details refer to AN3338.
6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Please refer to dedicated technical note TN0107 for mounting instructions.

6.1 SDIP-25L package information

Figure 10. SDIP-25L package outline
Table 14. SDIP-25L mechanical data

<table>
<thead>
<tr>
<th>Dim.</th>
<th>mm</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>43.90</td>
<td>44.40</td>
<td>44.90</td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td>1.15</td>
<td>1.35</td>
<td>1.55</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>1.40</td>
<td>1.60</td>
<td>1.80</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>38.90</td>
<td>39.40</td>
<td>39.90</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>21.50</td>
<td>22.00</td>
<td>22.50</td>
</tr>
<tr>
<td>B1</td>
<td></td>
<td>11.25</td>
<td>11.85</td>
<td>12.45</td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>24.83</td>
<td>25.23</td>
<td>25.63</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>5.00</td>
<td>5.40</td>
<td>6.00</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td>6.50</td>
<td>7.00</td>
<td>7.50</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>11.20</td>
<td>11.70</td>
<td>12.20</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>2.90</td>
<td>3.00</td>
<td>3.10</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>2.15</td>
<td>2.35</td>
<td>2.55</td>
</tr>
<tr>
<td>e1</td>
<td></td>
<td>3.40</td>
<td>3.60</td>
<td>3.80</td>
</tr>
<tr>
<td>e2</td>
<td></td>
<td>4.50</td>
<td>4.70</td>
<td>4.90</td>
</tr>
<tr>
<td>e3</td>
<td></td>
<td>6.30</td>
<td>6.50</td>
<td>6.70</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>33.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>5.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>11.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td></td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0.85</td>
<td>1.00</td>
<td>1.15</td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td>0.35</td>
<td>0.50</td>
<td>0.65</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>1.55</td>
<td>1.75</td>
<td>1.95</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>0.45</td>
<td>0.55</td>
<td>0.65</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>0°</td>
<td></td>
<td>6°</td>
</tr>
</tbody>
</table>
6.2 Packing information

Figure 11. SDIP-25L packing information

Base quantity: 11 pcs
Bulk quantity: 133 pcs
7 Revision history

Table 15. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-Apr-2013</td>
<td>1</td>
<td>Initial release</td>
</tr>
<tr>
<td>08-Jul-2013</td>
<td>2</td>
<td>Updated V_F typ value in Table 7: Inverter part and D_t value in Table 10: Logic inputs ($VCC = 15 V$ unless otherwise specified).</td>
</tr>
<tr>
<td>14-May-2014</td>
<td>3</td>
<td>Document status promoted from preliminary to production data. Updated Table 3: Inverter part, Table 6: Thermal data, Table 7: Inverter part and Section 6.2: Packing information. Minor text changes.</td>
</tr>
<tr>
<td>10-Apr-2015</td>
<td>4</td>
<td>Minor text edits throughout document Updated Figure 2: Pin layout (bottom view) Updated Section 6: Package information</td>
</tr>
</tbody>
</table>