

Excellent Integrated System Limited

Stocking Distributor

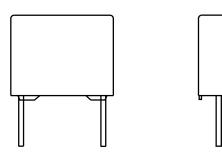
Click to view price, real time Inventory, Delivery & Lifecycle Information:

Vishay/BCcomponents BFC237111124

For any questions, you can email us directly: sales@integrated-circuit.com

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



www.vishay.com

MKT371

Vishay BCcomponents

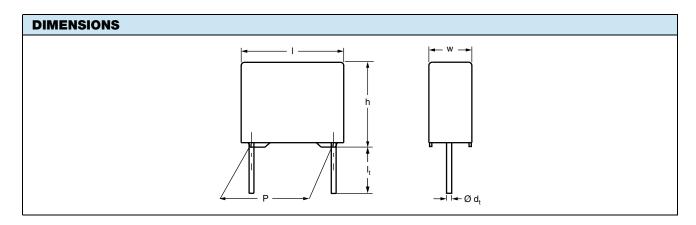
DC Film Capacitors MKT Radial Potted Type

FEATURES

- 7.62 mm lead pitch. Supplied loose in box and taped on reel or ammopack
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ROHS
COMPLIANT
HALOGEN
FREE
GREEN

(5-2008)


APPLICATIONS

Blocking and coupling, bypass and energy reservoir

QUICK REFERENCE DATA					
Capacitance tolerance	± 10 %, ± 5 %				
Capacitance range (E12 series)	0.0039 μF to 1.5 μF				
Rated DC voltage	63 V, 100 V, 250 V, 400 V				
Rated AC voltage	40 V, 63 V, 160 V, 220 V				
Climatic testing class (according to IEC 60068-1) 55/105/56					
Rated temperature	85 °C				
Maximum application temperature	105 °C				
Performance grade	Grade 1 (long life)				
Leads	Tinned wire				
Reference standards	IEC 60384-2				
Dielectric	Polyester film				
Electrodes	Metallized				
	Mono construction				
Construction					
Encapsulation	Flame retardant plastic case and epoxy resin (UL-class 94 V-0)				
Marking C-value; tolerance; rated voltage; manufacturer's symbol; year and manufacturer; manufacturer's type					

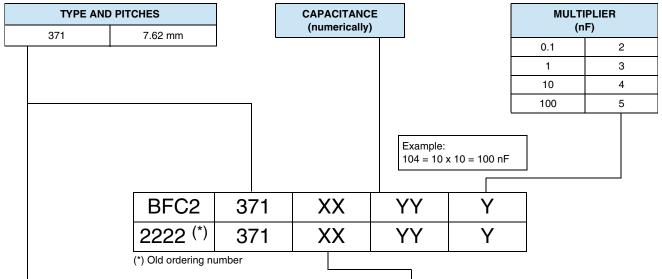
Note

• For more detailed data and test requirements, contact dc-film@vishay.com

Revision: 14-Mar-16 1 Document Number: 28109

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com



www.vishay.com

MKT371

Vishay BCcomponents

COMPOSITION OF CATALOG NUMBER

TYPE	PACKAGING	LEAD CONFIGURATION	PREFERRED TYPES						
ITPE	PACKAGING	LEAD CONFIGURATION	C-TOL.	63 V	100 V	250 V	400 V		
		Lead length	± 10 %	11	21	41	51		
	Loose in box	4.0 mm + 1.0 mm/- 0.5 mm	± 5 %	12	22	42	52		
	Loose III box	Lead length	± 10 %	15	25	45	55		
		26.0 ± 2.0 mm	± 5 %	16	26	46	56		
371	Taped on reel ⁽¹⁾	H ⁽¹⁾ = 18.5 mm P ₀ = 12.7 mm	± 10 %	35	65	75	85		
	raped on reer (**)	Reel diameter = 356 mm	± 5 %	36	66	76	86		
	Ammopack (1)	H ⁽¹⁾ = 18.5 mm	± 10 %	38	68	78	88		
	Ammopack	$P_0 = 12.7 \text{ mm}$	± 5 %	39	69	79	89		

Note

(1) For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139

SPECIFIC REFERENCE DATA						
DESCRIPTION	VALUE					
Tangent of loss angle:	at 1 kHz		at 10	kHz		at 100 kHz
C ≤ 0.1 µF	≤ 75 x 10 ⁻⁴		≤ 130	x 10 ⁻⁴		≤ 250 x 10 ⁻⁴
0.1 μF < C ≤ 0.47 μF	$\leq 75 \times 10^{-4}$		≤ 130	x 10 ⁻⁴		$\leq 250 \times 10^{-4}$
0.47 μF < C ≤ 1.5 μF	$\leq 75 \times 10^{-4}$		≤ 130	x 10 ⁻⁴		-
Dated voltage pulse clone (dLL/dt), at	63 V _{DC}	1	00 V _{DC}	250 V _{DC}		400 V _{DC}
Rated voltage pulse slope (dU/dt) _R at	18 V/µs	3	36 V/µs	70 V/μs		190 V/μs
R between leads, for C \leq 0.33 μ F						
at 10 V; 1 min	$>$ 15 000 M Ω					
at 100 V; 1 min		> 1	5 000 M Ω	> 30 000 N	MΩ	$>$ 30 000 M Ω
RC between leads, for C > 0.33 µF						
at 10 V; 1 min	> 5000 s			-		-
at 100 V; 1 min		>	5000 s			
R between interconnecting leads and case (foil method)	> 30 000 MΩ					
Withstanding (DC) voltage (cut off current 10 mA) $^{(1)}$; rise time \leq 1000 V/s	100 V; 1 min	160) V; 1 min	400 V; 1 m	nin	640 V; 1 min
Withstanding (DC) voltage between leads and case	200 V; 1 min	20	V; 1 min	500 V; 1 m	nin	800 V; 1 min
Maximum application temperature			105	°C		•

Note

(1) See "Voltage Proof Test for Metallized Film Capacitors": www.vishay.com/doc?28169

Revision: 14-Mar-16 2 Document Number: 28109

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

MKT371

Vishay BCcomponents

					C	ATALOG N	UMBER B	FC2 371 XX	YYYY AND	PACKAGIN	1G	
					LOOSE	E IN BOX AMMOPACK (2)			REE	(1)(2)		
U _{RDC}	CAP.	AP. DIMENSIONS	MASS	l _t = 4.0 mm + 1.0 mm/- 0.5 mm		l _t = 26.0 mm ± 2.0 mm		H = 18.5 mm; P ₀ = 12.7 mm		H = 18.5 mm; P ₀ = 12.7 mm		C-VALUE
(V)	(μ F)	(mm)	(g) ⁽³⁾	C-TOL. = ± 10 %	C-TOL. = ± 5 %	C-TOL. = ± 10 %	C-TOL. = ± 5 %	C-TOL. = ± 10 %	C-TOL. = ± 5 %	C-TOL. = ± 10 %	C-TOL. = ± 5 %	
				XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	YYY
			U _{RAC} =	40 V; PITC	H = 7.62 n	nm + 0.30 r	nm/- 0.40	mm; d _t = 0.	50 mm ± 0	.05 mm		
	0.056											563
	0.068	2.5 x 6.5 x 10.0	0.24	11	12	15	16	38	39	35	36	683
	0.082	2.5 x 0.5 x 10.0	0.24	(1000)	(1000)	(1000)	(1000)	(2000)	(2000)	(2000)	(2000)	823
	0.10											104
	0.12											124
	0.15	20 4 8 0 4 10 0	0.24	11	12	15	16	38	39	35	36 (1500)	154
	0.18	0.18 3.0 x 8.0 x 10.0	0.34	(1000)	(1000)	(1000)	(1000)	(1500)	(1500)	(1500)		184
	0.22											224
63	0.27											274
	0.33											334
	0.39	0.47 4.0 x 9.0 x 10.0	0.51	11 (1000)	12 (1000)	15 (1000)	16 (1000)	38 (1000)	39 (1000)	35	36 (1500)	394
	0.47									(1500)		474
	0.56											564
	0.68											684
	0.82	0.82 1.0 5.0 x 10.5 x 10.0	0.73	11		1	16 (1000) (1000)	38	39 (1000)	35	36 (1000)	824
	1.0			(1000)				(1000)		(1000)		105
	1.2			11	12	15	16	38	39	35	36	125
	1.5	6.0 x 11.5 x 10.0	1.0	(750)	(750)	(1000)	(1000)	(500)	(500)	(500)	(500)	155
			U _{RAC} =	63 V; PITC	H = 7.62 n	nm + 0.30 r	nm/- 0.40	mm; d _t = 0.	50 mm ± 0	.05 mm		
	0.018											183
	0.022											223
	0.027	0.50510.0	0.04	21	22	25	26	68	69	65	66	273
	0.033	2.5 x 6.5 x 10.0	0.24	(1000)	(1000)	(1000)	(1000)	(2000) (2000)	(2000)	(2000)	(2000)	333
	0.039										393	
	0.047											473
	0.056											563
	0.068			21	22	25	26	68	69	65	66	683
100	0.082	3.0 x 8.0 x 10.0	0.34	(1000)	(1000)	(1000)	(1000)	(1500)	(1500)	(1500)	(1500)	823
	0.10											104
	0.12											124
	0.15			21	22	25	26	68	68 69	65	66	154
	0.18	4.0 x 9.0 x 10.0	0.51	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	(1500)	(1500)	184
	0.22							, , ,	, ()==,			224
	0.27											274
	0.33			21	22	25	26	68	69	65	66	334
		5.0 x 10.5 x 10.0	0.73	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	394
		0.39 0.47		(1000)	(= ==,	(1000)	(1200)	(1300)	(.555)	(1000)	(1000)	

Revision: 14-Mar-16 3 Document Number: 28109

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

MKT371

Vishay BCcomponents

		ICAL DATA			С	ATALOG N	IUMBER BI	FC2 371 X	KYYY AND	PACKAGI	NG.	
						IN BOX	IOMBEN B		PACK (2)		L (1)(2)	
U _{RDC}	CVD	DIMENSIONS wxhxl	MASS		0 mm /- 0.5 mm	I _t = 26	I _t = 26.0 mm ± 2.0 mm		H = 18.5 mm; P ₀ = 12.7 mm		H = 18.5 mm; P ₀ = 12.7 mm	
(V)	(µF)	(mm)	(g) ⁽³⁾	C-TOL. = ± 10 %	C-TOL. = ± 5 %	C-TOL. = ± 10 %	C-TOL. = ± 5 %	C-TOL. = ± 10 %	C-TOL. = ± 5 %	C-TOL. = ± 10 %	C-TOL. = ± 5 %	
				XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	YYY
			U _{RAC} =	160 V; PIT	CH = 7.62 r	mm + 0.30	mm/- 0.40	mm; d _t = 0).50 mm ± 0).05 mm		
	0.0082											822
	0.010	2.5 x 6.5 x 10.0	0.24	41	42	45	46	78	79	75	76	103
	0.012	2.5 X 0.5 X 10.0 0.24	(1000)	(1000)	(1000)	(1000)	(2000)	(2000)	(2000)	(2000)	123	
	0.015											153
	0.018											183
	0.022											223
	0.027			41	42	45	46	78	79	75	76	273
250			(1000)	(1000)	(1000)	(1000)			(1500)	(1500)	333	
0.0	0.039											393
	0.047											473
	0.056											563
	0.068		.0 x 9.0 x 10.0 0.51	0.51 41 42 (1000)	42	45 (1000)	46	78 (1000)	79 (1000)	75 (1500)	76 (1500)	683
	0.082	4.0 x 9.0 x 10.0										823
	0.10						104					
		50 105 100	0.70	41	42	45	46	78	79	75	76	
	0.12	5.0 x 10.5 x 10.0	0.73	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	124
			U _{RAC} =	220 V; PIT	CH = 7.62 r	mm + 0.30	mm/- 0.40	mm; d _t = 0).50 mm ± 0).05 mm		
	0.0039											392
	0.0047	2.5 x 6.5 x 10.0	0.24	51	52	55	56	88	89	85	86	472
	0.0056		0.24	(1000)	(1000)	(1000)	(1000)	(2000)		(2000) (2	(2000)	562
	0.0068											682
	0.0082	0.00010.0	0.04	51	52	55	56	88	89	85	86	822
100	0.010	3.0 x 8.0 x 10.0	0.34	(1000)	(1000)	(1000)	(1000)	(1500)	(1500)	(1500)	(1500)	103
400	0.012	400040.0	0.54	51	52	55	56	88	89	85	86	123
	0.015	4.0 x 9.0 x 10.0	0.51	(1000)	(1000)	(1000)	(1000)	(1000)	(1000)	(1500)	(1500)	153
	0.018											183
	0.022											223
	0.027	5.0 x 10.5 x 10.0	11 () /3 1	52	55	56	88	89	85	86	273	
	0.033			(1000)	(1000)	(1000)	(1000)	(1000)	(1000) (1000)	(1000)	(1000)	333
	0.039]					393

Notes

- SPQ = Standard Packing Quantity
- (1) Reel diameter = 356 mm is available on request
- $^{(2)}$ H = in-tape height; P_0 = sprocket hole distance; for detailed specifications refer to packaging information: $\underline{www.vishay.com/doc?28139}$
- (3) Weight for short lead product only

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

MKT371

Vishay BCcomponents

MOUNTING

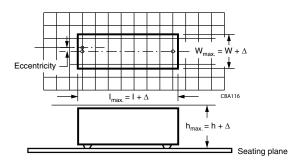
Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that stand-off pips are in good contact with the printed-circuit board:


- For pitches ≤ 15 mm capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements On Printed-Circuit Board

The maximum space for length (l_{max}), width (w_{max}) and height (h_{max}) of film capacitors to take in account on the printed-circuit board is shown in the drawing:

- For products with pitch \leq 15 mm, $\Delta w = \Delta l = 0.3$ mm and $\Delta h = 0.1$ mm
- For products with 15 mm < pitch \leq 27.5 mm, $\Delta w = \Delta I = 0.5$ mm and $\Delta h = 0.1$ mm

Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

SOLDERING

For general soldering conditions and wave soldering profile, we refer to the application note:

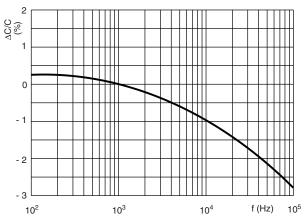
"Soldering Guidelines for Film Capacitors": www.vishay.com/doc?28171

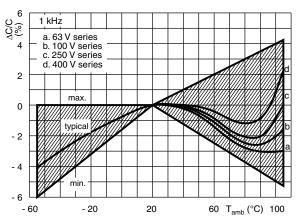
Storage Temperature

 T_{sta} = -25 °C to +35 °C with RH maximum 75 % without condensation

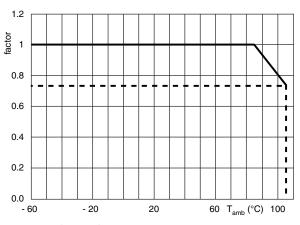
Ratings and Characteristics Reference Conditions

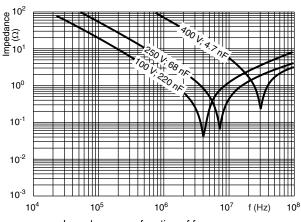
Unless otherwise specified, all electrical values apply to an ambient free air temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

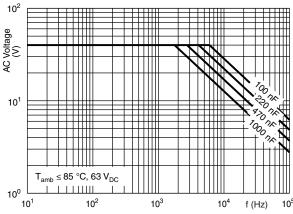

For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

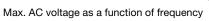

MKT371

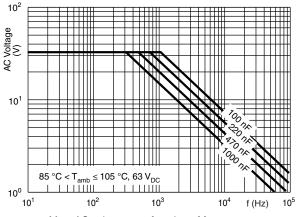
Vishay BCcomponents


CHARACTERISTICS


Capacitance as a function of frequency


Capacitance as a function of ambient temperature



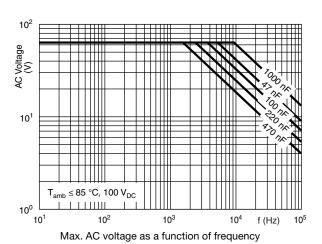

Max. DC and AC voltage as a function of temperature

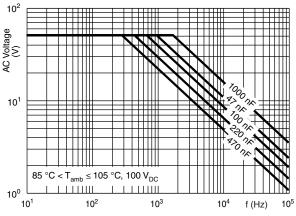
Impedance as a function of frequency

Max. AC voltage as a function of frequency

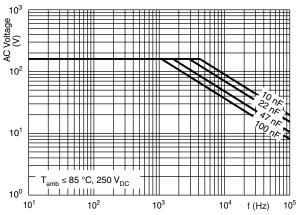
10³

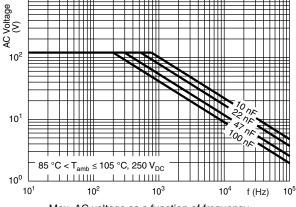
Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

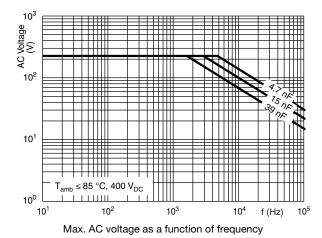

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

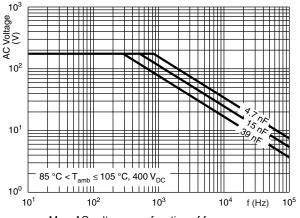


VISHAY.


www.vishay.com


Vishay BCcomponents


Max. AC voltage as a function of frequency

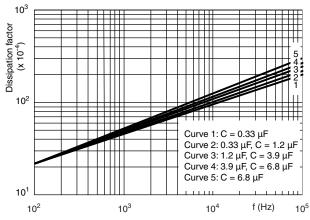


Max. AC voltage as a function of frequency

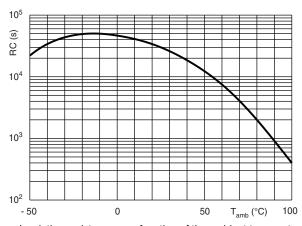
Max. AC voltage as a function of frequency

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

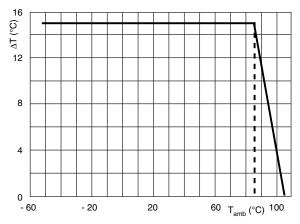
Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com


www.vishay.com

MKT371


Vishay BCcomponents

Maximum RMS current (sinewave) as a function of frequency


 U_{AC} is the maximum AC voltage depending on the ambient temperature in the curves "Max. RMS voltage and AC current as a function of frequency".

Tangent of loss angle as a function of frequency

Insulation resistance as a function of the ambient temperature (typical curve)

Maximum allowed component temperature rise (ΔT) as a function of the ambient temperature T_{amb} (°C)

HEAT CONDUCTIVITY (G) AS A FUNCTION OF (ORIGINAL) PITCH AND CAPACITOR BODY THICKNESS IN mW/°C				
W _{MAX} .	HEAT CONDUCTIVITY (mW/°C)			
(mm)	PITCH 7.62 mm			
2.5	3			
3.0	4			
4.0	5			
5.0	6			
6.0	7			

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

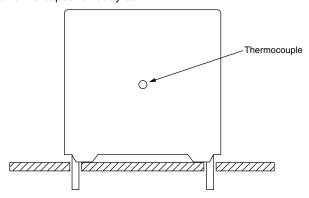
www.vishay.com

MKT371

Vishay BCcomponents

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors".

The component temperature rise (ΔT) can be measured (see section "Measuring the component temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = component temperature rise (°C)
- P = power dissipation of the component (mW)
- G = heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: dc-film@vishay.com

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{RDC})
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than 2√2 x U_{RAC} to avoid the ionization inception level
- The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{RDC} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 x \int_{0}^{1} \left(\frac{dU}{dt}\right)^{2} x \left(dt < U_{RDC} x \left(\frac{dU}{dt}\right)_{rated}\right)$$

T is the pulse duration.

- 4. The maximum component surface temperature rise must be lower than the limits (see graph "Max. allowed component temperature rise").
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat Conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

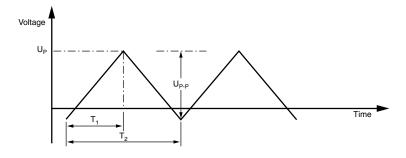
MKT371

Vishay BCcomponents

VOLTAGE CONDITIONS FOR 6 ABOVE					
ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 105 °C			
Maximum continuous RMS voltage	U _{RAC}	See "Max. AC voltage as function of temperature" per characteristics			
Maximum temperature RMS-overvoltage (< 24 h)	1.25 x U _{RAC}	U _{RAC}			
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{RDC}	1.3 x U _{RDC}			

Example

C = 330 nF - 63 V used for the voltage signal shown in next drawing.


 $U_{P-P} = 40 \text{ V}$; $U_P = 35 \text{ V}$; $T_1 = 100 \text{ }\mu\text{s}$; $T_2 = 200 \text{ }\mu\text{s}$

The ambient temperature is 35 °C

Checking conditions:

- 1. The peak voltage $U_P = 35 \text{ V}$ is lower than 63 V_{DC}
- 2. The peak-to-peak voltage 40 V is lower than $2\sqrt{2}$ x 40 V_{AC} = 113 U_{P-P}
- 3. The voltage pulse slope (dU/dt) = 40 V/100 μ s = 0.4 V/ μ s This is lower than 60 V/ μ s (see specific reference data for each version)
- 4. The dissipated power is 16.2 mW as calculated with fourier terms The temperature rise for W_{max.} = 3.5 mm and pitch = 5 mm will be 16.2 mW/3.0 mW/°C = 5.4 °C This is lower than 15 °C temperature rise at 35 °C, according figure "Max. allowed component temperature rise"
- 5. Not applicable
- 6. Not applicable

Voltage Signal

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-2 and Specific Reference Data".

GROUP C INSPECTION REQUI	GROUP C INSPECTION REQUIREMENTS						
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS					
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1							
4.1 Dimensions (detail)		As specified in chapters "General Data" of this specification					
4.3.1 Initial measurements	Capacitance Tangent of loss angle: for C \leq 470 nF at 100 kHz for 470 nF $<$ C \leq 10 μ F at 10 kHz for C $>$ 10 μ F at 1 kHz						
4.3 Robustness of terminations	Tensile and bending	No visible damage					
4.4 Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s						

Revision: 14-Mar-16 10 Document Number: 28109

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

MKT371

Vishay BCcomponents

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE	CONDITIONS	TENIOTIMANOE TEGORIEMENTO
OF SUB-GROUP C1		
4.14 Component solvent resistance	Isopropylalcohol at room temperature	
	Method: 2	
	Immersion time: 5 min ± 0.5 min	
	Recovery time: min. 1 h, max. 2 h	
4.4.2 Final measurements	Visual examination	No visible damage
		Legible marking
	Compaile	14.0/01 < 0.0/ - f the control of the
	Capacitance	ΔC/C ≤ 2 % of the value measured initiall
	Tangent of loss angle	Increase of tan δ
		≤ 0.005 for: C ≤ 100 nF or
		≤ 0.010 for: 100 nF < C ≤ 220 nF or
		≤ 0.015 for: 220 nF < C ≤ 470 nF and
		≤ 0.003 for: C > 470 nF
SUB-GROUP C1B PART OF SAMPLE		Compared to values measured in 4.3.1
OF SUB-GROUP C1		
4.6.1 Initial measurements	Capacitance	No visible damage
	Tangent of loss angle:	
	for C ≤ 470 nF at 100 kHz	
	for 470 nF < C ≤ 10 μF at 10 kHz for C > 10 μF at 1 kHz	
	101 0 > 10 με αι 1 κει2	
4.6 Rapid change of temperature	θA = -55 °C	
	$\theta B = +105 ^{\circ}C$	
	5 cycles	
	Duration t = 30 min	
4.7 Vibration	Visual examination	No visible damage
	Mounting:	
	see section "Mounting" of this specification	
	Procedure B4	
	Frequency range: 10 Hz to 55 Hz	
	Amplitude: 0.75 mm or	
	Acceleration 98 m/s ²	
	(whichever is less severe)	
SUB-GROUP C1B PART OF SAMPLE	Total duration 6 h	
OF SUB-GROUP C1		
4.7.2 Final inspection	Visual examination	No visible damage
4.9 Shock	Mounting:	
T.O OHOUN	see section "Mounting" of this specification	
	Pulse shape: half sine	
	Acceleration: 490 m/s ²	
	Duration of pulse: 11 ms	
	Burdion of pulse. 11 ms	
4.9.3 Final measurements	Visual examination	No visible damage
	Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.6
	Tangent of loss angle	Increase of tan δ
		≤ 0.010
		Compared to values measured in 4.6.1
	Insulation resistance	As specified in section "Insulation
		Resistance" of this specification

Revision: 14-Mar-16 Document Number: 28109

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

MKT371

Vishay BCcomponents

GROU	P C INSPECTION REQUIR	REMENTS	
SUB-CL	AUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1 COMBINED SAMPLE CIMENS OF SUB-GROUPS D C1B		
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: +105 °C Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: -55 °C Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2	Final measurements	Voltage proof = U _{RDC} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of tan δ ≤ 0.010 Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GF	ROUP C2		
4.11 D	Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH	
4.11.1 lr	nitial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.11.3 F	inal measurements	Voltage proof = U _{RDC} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.11.1.
		Tangent of loss angle	Increase of tan $\delta \leq 0.005$ Compared to values measured in 4.11.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB GR	OUP C3		
4.12 E	indurance	Duration: 2000 h 1.25 x U _{RDC} at 85 °C	
		0.8 x 1.25 U _{RDC} at 105 °C	

Revision: 14-Mar-16 Document Number: 28109 12

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

www.vishay.com

MKT371

Vishay BCcomponents

GROUP C INSPECTION REQU	IREMENTS	
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB GROUP C3		
4.12.1 Initial measurements	Capacitance Tangent of loss angle: for C \leq 470 nF at 100 kHz for 470 nF < C \leq 10 μ F at 10 kHz for C > 10 μ F at 1 kHz	
4.12.5 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \leq 5$ % compared to values measured in 4.12.1
	Tangent of loss angle	Increase of tan δ \leq 0.005 at 85 °C \leq 0.010 at 100 °C Compared to values measured in 4.12.1
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GROUP C4		
4.13 Charge and discharge	10 000 cycles Charged to U_{RDC} Discharge resistance: $R = \frac{U_R}{C \times 2.5 \times (dU/dt)_R}$	
4.13.1 Initial measurements	Capacitance Tangent of loss angle: for C \leq 470 nF at 100 kHz for 470 nF $<$ C \leq 10 μ F at 10 kHz for C $>$ 10 μ F at 1 kHz	
4.13.3 Final measurements	Capacitance	$\left \Delta C/C\right \leq 3$ % compared to values measured in 4.13.1
	Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 100$ nF or ≤ 0.010 for: 100 nF $< C \leq 220$ nF or ≤ 0.015 for: 220 nF $< C \leq 470$ nF and ≤ 0.003 for: $C > 470$ nF Compared to values measured in 4.13.1
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

Datasheet of BFC237111124 - CAP FILM 0.12UF 10% 63VDC RADIAL

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

Legal Disclaimer Notice

www.vishay.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000