Excellent Integrated System Limited Stocking Distributor Click to view price, real time Inventory, Delivery & Lifecycle Information: Texas Instruments CD74HCT688E For any questions, you can email us directly: sales@integrated-circuit.com Data sheet acquired from Harris Semiconductor SCHS196C High-Speed CMOS Logic 8-Bit Magnitude Comparator September 1997 - Revised August 2003 #### **Features** - Cascadable - Fanout (Over Temperature Range) - Wide Operating Temperature Range \dots -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V - HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, $I_I \leq 1 \mu A$ at $V_{OL}, \, V_{OH}$ #### Description The 'HC688 and 'HCT688 are 8-bit magnitude comparators designed for use in computer and logic applications that require the comparison of two 8-bit binary words. When the compared words are equal the output (Y) is low and can be used as the enabling input for the next device in a cascaded application. #### Ordering Information | PART NUMBER | TEMP. RANGE (°C) | PACKAGE | |---------------|------------------|--------------| | CD54HC688F3A | -55 to 125 | 20 Ld CERDIP | | CD54HCT688F3A | -55 to 125 | 20 Ld CERDIP | | CD74HC688E | -55 to 125 | 20 Ld PDIP | | CD74HC688M | -55 to 125 | 20 Ld SOIC | | CD74HC688M96 | -55 to 125 | 20 Ld SOIC | | CD74HC688NSR | -55 to 125 | 20 Ld SOP | | CD74HC688PWR | -55 to 125 | 20 Ld TSSOP | | CD74HC688PWT | -55 to 125 | 20 Ld TSSOP | | CD74HCT688E | -55 to 125 | 20 Ld PDIP | | CD74HCT688M | -55 to 125 | 20 Ld SOIC | | CD74HCT688M96 | -55 to 125 | 20 Ld SOIC | NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250. #### **Pinout** CD54HC688, CD54HCT688 (CERDIP) CD74HC688 (PDIP, SOIC, SOP, TSSOP) CD74HCT688 (PDIP, SOIC) TOP VIEW > 20 V_{CC} **E** 1 Α0 19 Y B0 18 B7 Α1 17 A7 16 B6 **A2** 15 A6 14 B5 B2 А3 13 A5 12 B4 B3 9 GND TO 11 A4 ## Functional Diagram #### TRUTH TABLE | INP | UTS | OUPUTS | |-------|-----|--------| | A, B | Ē | Υ | | A = B | L | L | | A ≠ B | L | Н | | X | Н | Н | H = High Voltage Level, L = Low Voltage Level, X = Don't Care | Absolute Maximum Ratings | Thermal Information | | |--|--|---| | DC Supply Voltage, V_{CC} 0.5V to 7V DC Input Diode Current, I_{IK} For $V_I < -0.5$ V or $V_I > V_{CC} + 0.5$ V ± 20 mA DC Output Diode Current, I_{OK} For $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V ± 20 mA DC Output Source or Sink Current per Output Pin, I_O For $V_O > -0.5$ V or $V_O < V_{CC} + 0.5$ V ± 25 mA DC V_{CC} or Ground Current, V_{CC} or | Thermal Resistance (Typical, Note 1) θ JA (°C/W) E (PDIP) Package 69 M (SOIC) Package 58 NSR (SOP) Package 60 PW (TSSOP) Package 83 Maximum Junction Temperature 150°C Maximum Storage Temperature Range -65°C to 150°C Maximum Lead Temperature (Soldering 10s) 300°C (SOIC - Lead Tips Only) | С | | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | | | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. #### **DC Electrical Specifications** | | | TE:
CONDI | | Vcc | V _{CC} | | | -40°C 1 | O 85°C | -55°C T | O 125°C | | |-----------------------------|-----------------|------------------------------------|---------------------|-----|-----------------|-----|------|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | - | | | | | - | - | | | | | - | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | • | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | High Level Output | V _{OH} | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | CIVIOS LOAGS | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | ٧ | | High Level Output | | | - | - | - | - | - | - | - | - | - | ٧ | | Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | ٧ | | TTE LOads | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | ٧ | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | ٧ | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | ٧ | | CIVICO LOAGS | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | ٧ | | Low Level Output | | | - | - | - | - | - | - | - | - | - | ٧ | | Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | ٧ | | TTE LUaus | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | lı | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μΑ | #### DC Electrical Specifications (Continued) | | | TES
CONDI | | Vcc | V _{CC} 25°C | | | -40°C 1 | O 85°C | -55°C T | O 125°C | | |--|------------------------------|------------------------------------|---------------------|---------------|----------------------|-----|------|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HCT TYPES | | | | | | | | | | | | | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | V | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output
Voltage
CMOS Loads | V _{OH} | V _{IH} or V _{IL} | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High Level Output
Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | Low Level Output
Voltage
CMOS Loads | V _{OL} | V _{IH} or V _{IL} | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output
Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | I _I | V _{CC} and
GND | 0 | 5.5 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device
Current | lcc | V _{CC} or
GND | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μА | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 2) | V _{CC}
-2.1 | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μА | #### NOTE: #### **HCT Input Loading Table** | INPUT | UNIT LOADS | |-------------|------------| | Enable | 0.7 | | Data Inputs | 0.35 | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., $360\mu\text{A}$ max at $25^{\text{O}}\text{C}.$ #### Switching Specifications Input t_r, t_f = 6ns | | | TEST | TEST V _{CC} | | 25°C | | | -40°C TO 85°C | | -55°C TO 125°C | | |------------------------------|-------------------|-----------------------|----------------------|-----|------|-----|-----|---------------|-----|----------------|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | - | | | | | | | | | | | | Propagation Delay (Figure 1) | ^t PLH, | C _L = 50pF | 2 | - | - | 170 | - | 210 | - | 255 | ns | | An to Output | ^t PHL | | 4.5 | - | - | 34 | - | 42 | - | 51 | ns | | | | C _L =15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 29 | - | 36 | - | 43 | ns | | Bn to Output | ^t PLH, | C _L = 50pF | 2 | - | - | 170 | - | 210 | - | 255 | ns | | | ^t PHL | | 4.5 | - | - | 34 | - | 42 | - | 51 | ns | | | | C _L =15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 29 | - | 36 | - | 43 | ns | ^{2.} For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA. #### Switching Specifications Input t_p , $t_f = 6ns$ (Continued) | | | TEST | v _{cc} | | 25°C | | -40°C 1 | O 85°C | -55°C T | O 125°C | | |--|-------------------------------------|-----------------------|-----------------|-----|------|-----|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | E to Output | t _{PLH,} | C _L = 50pF | 2 | - | - | 120 | - | 150 | - | 180 | ns | | | ^t PHL | | 4.5 | - | - | 24 | - | 30 | - | 36 | ns | | | | C _L =15pF | 5 | - | 9 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 20 | - | 26 | - | 30 | ns | | Output Transition Time | t _{TLH} , t _{THL} | C _L = 50pF | 2 | - | - | 75 | - | 95 | - | 110 | ns | | (Figure 1) | | | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | | 6 | - | - | 13 | - | 16 | - | 19 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | C _L =15pF | 5 | - | 22 | - | - | - | - | - | pF | | HCT TYPES | | | | | | | | | | | | | Propagation Delay (Figure 1) | ^t PLH, | C _L = 50pF | 4.5 | - | - | 34 | - | 42 | - | 51 | ns | | An to Output | ^t PHL | C _L =15pF | 5 | - | 14 | - | - | - | - | - | ns | | Bn to Output | t _{PLH} , | C _L = 50pF | 4.5 | - | - | 34 | - | 42 | - | 51 | ns | | | ^t PHL | C _L =15pF | 5 | - | 14 | - | - | - | - | - | ns | | E to Output | t _{PLH} , | C _L = 50pF | 4.5 | - | - | 24 | - | 30 | - | 36 | ns | | | ^t PHL | C _L =15pF | 5 | - | 9 | - | - | - | - | - | ns | | Output Transition Time (Figure 1) | t _{TLH} , t _{THL} | C _L = 50pF | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | C _L =15pF | 5 | - | 22 | - | - | - | - | - | pF | #### NOTES: - 3. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per gate. - 4. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where $f_i = Input$ Frequency, $C_L = Output$ Load Capacitance, $V_{CC} = Supply$ Voltage. #### Test Circuit and Waveform FIGURE 1. PROPAGATION DELAY AMD TRANSITION TIMES Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM 10-Jun-2014 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|---------------------------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | 5962-8685701RA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | 5962-8685701RA
CD54HCT688F3A | Samples | | CD54HC688F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | 5962-8681801RA
CD54HC688F3A | Samples | | CD54HCT688F | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54HCT688F | Samples | | CD54HCT688F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | 5962-8685701RA
CD54HCT688F3A | Samples | | CD74HC688E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HC688E | Samples | | CD74HC688M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC688M | Samples | | CD74HC688M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC688M | Samples | | CD74HC688M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC688M | Samples | | CD74HC688MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC688M | Samples | | CD74HC688NSR | ACTIVE | SO | NS | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HC688M | Samples | | CD74HC688PWR | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HJ688 | Samples | | CD74HC688PWT | ACTIVE | TSSOP | PW | 20 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HJ688 | Samples | | CD74HCT688E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HCT688E | Samples | | CD74HCT688EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD74HCT688E | Samples | | CD74HCT688M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT688M | Samples | | CD74HCT688M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT688M | Samples | | CD74HCT688M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT688M | Samples | Addendum-Page 1 Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|-------------------------|---------| | CD74HCT688ME4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT688M | Samples | | CD74HCT688MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HCT688M | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (6) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "-" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 | OTHER QUALIFIED | VERSIONS OF | CD54HC688, | CD54HC1688, | CD74HC688, | CD74HC1688: | |-----------------|-------------|------------|-------------|------------|-------------| | | | | | | | ● Catalog: CD74HC688, CD74HCT688 Military: CD54HC688, CD54HCT688 NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications Addendum-Page 3 Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** www.ti.com 30-Dec-2014 #### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | P1 Pitch between successive cavity centers #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74HC688M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | CD74HC688NSR | SO | NS | 20 | 2000 | 330.0 | 24.4 | 9.0 | 13.0 | 2.4 | 4.0 | 24.0 | Q1 | | CD74HC688PWR | TSSOP | PW | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.1 | 1.6 | 8.0 | 16.0 | Q1 | | CD74HC688PWT | TSSOP | PW | 20 | 250 | 330.0 | 16.4 | 6.95 | 7.1 | 1.6 | 8.0 | 16.0 | Q1 | | CD74HCT688M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## **PACKAGE MATERIALS INFORMATION** 30-Dec-2014 www.ti.com #### *All dimensions are nominal | 7 til dilliciolorio are nominal | | | | | | | | |---------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | CD74HC688M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74HC688NSR | SO | NS | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74HC688PWR | TSSOP | PW | 20 | 2000 | 367.0 | 367.0 | 38.0 | | CD74HC688PWT | TSSOP | PW | 20 | 250 | 367.0 | 367.0 | 38.0 | | CD74HCT688M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com ## J (R-GDIP-T**) ## CERAMIC DUAL IN-LINE PACKAGE 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. #### **MECHANICAL DATA** ## N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE | PINS ** | 14 | 16 | 18 | 20 | |---------------------|------------------|------------------|------------------|------------------| | A MAX | 0.775
(19,69) | 0.775
(19,69) | 0.920
(23,37) | 1.060
(26,92) | | A MIN | 0.745
(18,92) | 0.745
(18,92) | 0.850
(21,59) | 0.940
(23,88) | | MS-001
VARIATION | AA | BB | AC | AD | - . All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. **DW0020A** # Jijijijiji ## **PACKAGE OUTLINE** SOIC - 2.65 mm max height SOIC - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. - 5. Reference JEDEC registration MS-013. ## **EXAMPLE BOARD LAYOUT** ## **DW0020A** SOIC - 2.65 mm max height SOIC NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. ## **EXAMPLE STENCIL DESIGN** ## **DW0020A** SOIC - 2.65 mm max height SOIC NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ## **MECHANICAL DATA** PW (R-PDSO-G20) PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 #### **LAND PATTERN DATA** - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP #### **MECHANICAL DATA** #### NS (R-PDSO-G**) ## 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. Datasheet of CD74HCT688E - IC COMPARATOR IDENTITY 8B 20DIP Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications Computers and Peripherals **Data Converters** dataconverter.ti.com www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com **Products** OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated